Fish Health Management

Matt Rogge, Ph.D.
Department of Biology
University of Wisconsin-Stevens Point
Overview of Talk

• Introduction to fish health
• Types of disease
 – Dietary
 – Water Quality
 – Infectious
• Signs of disease
• Diagnosis and treatment

http://www.ag.auburn.edu/fish/image_gallery/data/media/61/ESC.jpg
Fish Health

• Health of fish is dependent on many factors
 – Environmental conditions
 • Quality of diet
 • Stocking density
 • Quality of water
 – Sources and types of pathogens
 – Species/strain of fish

Feed

• Use a species-appropriate high quality feed
• Different formulations for different life stages
 – Starter feed
 – Fingerling feed
 – Grow-out feed
• Nutritional deficiencies lead to growth defects, internal organ dysfunction, anemia, etc.
• Poor diet can lead to immune dysfunction, resulting in increased risk of infection
Stocking Density

- High density increases disease transmission
- Reduces water quality
- Increases stress
Water Quality

- Poor water quality can
 - cause stress and hinder immune responses
 - support the growth of unwanted microbes
 - directly result in mortality
Water Quality Parameters

- Temperature, pH, dissolved oxygen
- Nitrogen
 - Ammonia
 - $\text{NH}_3/\text{NH}_4^+$
 - Nitrite (NO_2^-)
 - Nitrate (NO_3^-)
- Chlorine
- Alkalinity and hardness
- Dissolved gases

Total Ammonia Nitrogen (TAN) - ppm

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>6.0</th>
<th>6.4</th>
<th>6.8</th>
<th>7.0</th>
<th>7.2</th>
<th>7.4</th>
<th>7.6</th>
<th>7.8</th>
<th>8.0</th>
<th>8.2</th>
<th>8.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>200</td>
<td>67</td>
<td>29</td>
<td>18</td>
<td>11</td>
<td>7.1</td>
<td>4.4</td>
<td>2.8</td>
<td>1.8</td>
<td>1.1</td>
<td>0.68</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>50</td>
<td>20</td>
<td>13</td>
<td>8.0</td>
<td>5.1</td>
<td>3.2</td>
<td>2.0</td>
<td>1.3</td>
<td>0.83</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>40</td>
<td>14</td>
<td>9.5</td>
<td>5.9</td>
<td>3.7</td>
<td>2.4</td>
<td>1.5</td>
<td>0.95</td>
<td>0.61</td>
<td>0.36</td>
</tr>
<tr>
<td>16</td>
<td>67</td>
<td>29</td>
<td>11</td>
<td>6.9</td>
<td>4.4</td>
<td>2.7</td>
<td>1.8</td>
<td>1.1</td>
<td>0.71</td>
<td>0.45</td>
<td>0.27</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>20</td>
<td>8.0</td>
<td>5.1</td>
<td>3.2</td>
<td>2.1</td>
<td>1.3</td>
<td>0.83</td>
<td>0.53</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>15</td>
<td>6.1</td>
<td>3.9</td>
<td>2.4</td>
<td>1.5</td>
<td>0.98</td>
<td>0.63</td>
<td>0.4</td>
<td>0.26</td>
<td>0.16</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>12</td>
<td>4.7</td>
<td>2.9</td>
<td>1.8</td>
<td>1.2</td>
<td>0.75</td>
<td>0.48</td>
<td>0.31</td>
<td>0.2</td>
<td>0.12</td>
</tr>
<tr>
<td>32</td>
<td>22</td>
<td>8.7</td>
<td>3.5</td>
<td>2.2</td>
<td>1.4</td>
<td>0.89</td>
<td>0.57</td>
<td>0.37</td>
<td>0.24</td>
<td>0.16</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Use this table to find out when ammonia levels will start to become toxic to your fish.
Nitrogen Cycle

Biological filtration

\[\text{NH}_3/\text{NH}_4^+ \rightarrow \text{NO}_2^- \rightarrow \text{NO}_3^- \]

Bacteria are necessary!
Maintaining a Biofilter

- Adequate surface area
- Aeration – O_2 is required
- Limited use of chemicals in the system
 - Disinfectants
 - Antibiotics
 - If used, the microbes need time to recover and recolonize
Infectious Agents

- Fish are susceptible to various infectious agents
 - Bacteria
 - Viruses
 - Fungi
 - Parasites
Opportunistic Infectious Agents

• Cause disease when fish are stressed or injured
 – Organisms may always be present in a system
 – *Flavobacterium, Streptococcus*

• Although these organisms are present, the immune system of healthy fish prevents disease outbreaks
Primary Infectious Agents

• Pathogens that infect healthy fish
 – Tend to cause more severe infections
 – Tend to be harder to treat

• Prevent using strict biosecurity measures

• Stressful conditions will allow these to spread faster and be harder to treat
Susceptibility of Fish to Infection

• Young fish tend to be more susceptible
• Some pathogens are species or strain-specific, while others infect many species
• Stress increases susceptibility
 – Temperature, pH, water quality, etc
• Nutritional deficiencies increase susceptibility
Identifying Disease in a Population

- Behavior changes
 - Off feed
 - Piping
 - Erratic swimming
 - Lethargy

- Physical changes
 - Lesions
 - Popeye
 - Dropsy
 - Discolored gills
What to Do Next

• Remove any dead fish immediately
• If possible quarantine sick fish
• Review water quality records; check feed
• Contact a veterinarian and/or submit fish to a diagnostic lab
 – Ship live if possible
 – Dead on ice is next best
Treatments

• Work with a veterinarian on developing a treatment strategy
 – Antibiotics may work for bacterial infections
 • Difficult if fish are off feed
 – Chemical/bath treatments may work for fungal or parasitic infections
 • Limited approval
 • Impractical for pond culture
“An ounce of prevention is worth a pound of cure”

- Purchase eggs/fingerlings from a reputable dealer; ensure certified pathogen-free
- Vaccinate if available
- Maintain proper water quality
- Implement strict biosecurity measures
 - Disinfect equipment
 - Quarantine incoming fish
 - Limit access
- Be familiar with common diseases
- Train staff to recognize disease signs
Minimizing Stress

• Use appropriate stocking densities
• Maintain proper water conditions
• Minimize handling
• Maintain good water quality
• Use an appropriate feed
• Reduce the presence of predators
In Summary...

- Fish health is dependent on many factors
 - Environmental
 - Types of pathogens
 - Fish species and age

In Summary…

• The best treatment is prevention
 – Quality fish
 – Good water quality
 – High quality feed
 – Minimize stress
 – Minimize cross-contamination between systems
In Summary

• If abnormal mortalities occur and signs of disease are present
 – Consult a fish health professional
 – Submit specimens for diagnostic testing
 – Apply treatments as directed
 – Review biosecurity protocols
Resources

- **RAC Publications:** https://www.ncrac.org/publications