SNAIL MANAGEMENT IN CULTURE PONDS

ROLE IN LIMITING GRUB ISSUES
BIOLOGICAL PROFILE

• Internal parasites (endoparasites)
• Varying size, shape, and habitat
• Complex life cycles
 • involving several hosts
 • both sexual and asexual reproduction within these hosts
• Actively or passively invade
EFFECTS

- Most grubs not a serious threat to fish health
- Presence undesirable
 - Anglers
 - Producers
 - Consumers
LOCATED IN MIDWEST

- Commonly seen in ponds
 - Black grub (*Uvulifer ambloplitis*)
 - White grub (*Posthodiplostomum minimum*)
 - Yellow grub (*Clinostomum complanatum*)
GENERIC LIFE CYCLE

- Bird (definitive)
- Snail (first intermediate)
- Fish (second intermediate)
BLACK GRUB

- **Black spot disease**
 - Pinhead-sized spots
 - 2 mm, 2/32 in
 - skin, tail, fins, musculature
 - Effected species
 - Sunfish (*Lepomis* spp.)
 - Black bass (*Micropterus* spp.)
 - Crappie (*Pomoxis* spp.),
 - Yellow perch (*Perca flavescens*)

Live in fish for 4 years
EFFECTS

Undesirable appearance

Photo credit: Parasite and Disease Section, Dept. of Fisheries and Allied Aquacultures, Auburn University

Photo credit: Michigan Department of Natural Resources
WHITE GRUB

• Often overlooked by both anglers and producers
 • Size (1 mm or 1/32 inch)
 • Location (kidneys, liver, heart)

• Pond strains
 • *P. minimum centrarchi* (sunfish)
 • *P. m. minimum* (minnows)
EFFECTS

Photo credit: Andrew J. Mitchell, USDA/ARS, Stuttgart, AK
YELLOW GRUB

• Common parasite in North America
 • Size (3 to 8 mm or 1/8 to ¼ inch)
• Visible after skinning or filleting
• Affect
 • Intermuscular (in the muscle)
 • Subcutaneously (under the skin)
 • Capable of infecting all freshwater fish
EFFECTS

• Both anglers and consumers do not accept fish because of unsightly appearance

Photo credit: Bill West, Blue Iris Fish farm
PREVENTION

• Limit initial grub infections
 • Infected fish cannot be treated
 • Grubs live in fish for years
 • Control at this point would serve to prevent further build-up
• Break the cycle (snail or birds)
SNAIL PREVENTION

Physical

• Remove vegetation
• Use of approved herbicides to control both algae and vascular plants
• Awareness of possible low oxygen related to decaying vegetation and warm water temperatures
BIRD PREVENTION

• Migratory Bird Treaty Act

• Environmentally sound solutions
BIRD PREVENTION

- Netting, wire grids, fencing
 - high cost, maintenance, harvest interference
- Noise-making devices
 - propane cannons, cracker shells
- Visual devices
 - “eye-spot” balloons, remote-control boats and planes, scarecrows
- Large active dogs highly recommended
BIRD PREVENTION

U.S. Fish and Wildlife Service (US-FWS)

- Issue depredation permits after assessing damage
- Remove limited amount of fish-eating birds from specific facilities
- Permits are tightly controlled (Migratory Bird Treaty Act)

USDA/APHIS/Wildlife Service
BREAKING UP THE LIFE CYCLE

PHYSICAL
PHYSICAL MEANS

- Aquatic plant and algae control
 - Removes detritus material for snails to live
- Drying pond bottoms
 - Use of lime
 - Delays culture season
 - Only limits the onset not the actual occurrence of snails
- Use of flow (Blue Iris Farm)
 - Use of pond-side tanks with flow to limit infestation
BREAKING UP LIFE CYCLE

CHEMICAL
CHEMICAL

• Bayluscide™
 • Not approved for food dish
• Copper sulfate with citric acid
 • Combination of copper sulfate and citric acid along pond shore line
 • Eliminated >97% of planorbid snails
 • Uniform copper sulfate application
 • 2.5-5.0 ppm of copper sulfate effective (CC ponds)
 • Higher level may have affected fish health
 • Some species will be killed
 • Study site had >200 ppm alkalinity and hardness
• Possible water quality problems
 • Effect on zooplankton populations
 • Low dissolved oxygen
 • Toxicity of copper to specific fish species
 • Needed awareness of the total alkalinity level
CHEMICAL

- Hydrated lime
 - Similar results as copper sulfate
 - Snails can burrow away from treatment
 - High pH effects
 - Expensive
 - Can be ~$300/acre
CHEMICAL

• NCRAC project
 • Investigated chemical, biological and their combination period
 • Chemical (SIU-C)
 • Hydrated lime
 • Due to pond mixing, settled lime mixed with water column resulting in high pH levels
 • Ponds treated with hydrated lime at 70 lb/10 ft of shoreline in a 3.3-ft m swath
 • 99% estimated reductions in snail densities following application, but snail populations rebounded to previous levels within 2 months
 • Chemical, biological and combination effective
BIOLOGICAL BREAKING UP LIFE CYCLE
BIOLOGICAL

- Supplemental stocking of snail predators
 - Redear sunfish (shellcracker)
 - Good snail consumption but limited by mouth gape
 - >4 inch avoid snails > ½ inch
 - Effective in controlling Physa but not rams-horn snails until fully mature
 - Limited by cold climates

[Image of a fish and a map showing the distribution of Lepomis microlophus]
BIOLOGICAL

- Hybrid redear sunfish (reedar x green sunfish)
 - Larger mouth gape
 - NCRAC Project (Southern Illinois University-Carbondale)
 - 4.7 – 5.5 TL consumed Physa and Planorbellla up to 12.0 mm (0.5 in) total length; redear sunfish in this size range only consumed snails <0.4 inch total length.
 - Maximum consumption rates equivalent to those of similar size redear sunfish.
 - Stocked 4 redear sunfish and 4 hybrid redear per acre
 - Reduced snail populations over the culture period
BIOLOGICAL

- NCRAC Project (UW-Stevens Point)
 - Use of crawfish resulted in 18-43% fewer grub infestations in yellow perch over 2 years
 - More time needed for complete snail elimination
 - Only 2-12% of snails actually infested yellow grub parasite
OTHER POSSIBLE PREDATORS

- Black carp
 - Exotic, illegal
- Blue catfish
- Freshwater drum
- Freshwater prawns
 - NCRAC (Southern Illinois University-Carbondale)
 - Freshwater prawns showed a strong preference for consuming Physa over Planorbella
SNAIL SPECIES AND SIZE PREFERENCES
FRESHWATER PRAWN

![Graph showing the percent eaten of Physa and Helisoma snails by freshwater prawn as a function of snail length.]

Source: Greg Whitlege, Southern Illinois University-Carbondale
INFORMATION

• **NCRAC site**
 - Grub ID
 - http://www.ncrac.org/node/633
 - Literature review
 - Technical Bulleting #115
 - Aquatic plant management
 - http://www.ncrac.org/node/631
 - Termination report
 - Wisconsin study
CONCLUSIONS

• Prevention when possible
• Use care in use of chemical controls
• Consider use of biological controls for long-term controls
Joe Morris
Telephone: 515-294-4622
email: jemorris@iastate.edu
Web site: http://www.public.iastate.edu/~jemorris/