Water Quality Management

Joe Morris

Water Resources

Inadequate water quality causes more losses than any other problem!

Importance to Disease Management

• The disease today is most likely related to a stress from 10-14 days ago!

Fish perform all bodily functions in water

- Eat
- Breathe
- Excrete wastes
- Reproduce
- Take in and lose salts

Water Balance in Freshwater Fish

Water Quality

Water quality in aquaculture describes the hospitableness of a water body for the culture of desirable aquatic species.

Physical

Chemical

Water Quality Parameters

Physical

- Temperature
- Turbidity
 - light penetration

Chemical

- pH
- Salinity (salts)
- Dissolved Oxygen (DO)
- Chlorine
- Nitrogen
 - Ammonia
 - Nitrite
 - Nitrate
- Nutrients: Phosphorus and Nitrogen
- Alkalinity (carbonates)
- Hardness (dissolved cations)
 - Calcium
- Others

- Affects the metabolism of most aquatic organisms
 - Q10 Rule
 - Each species has optimal range for growth
 - Affects chemical parameters in water
 - Dissolved Oxygen
 - Ammonia Nitrogen
 - Measured in °C or °F

Temperature Extremes

- Causes
 - Excessively warm water causes mortality in trout
 - Excessively cool water causes mortality in tilapia and other tropical fish
 - Water outside optimal growing range
 - Affects growth rates

Symptoms of Temperature Extremes

- Symptoms
 - Loss of appetite.
 - Loss of equilibrium.
 - Acute mortality
- Treatment
 - Maintain temperature at desired range.
 - Flush fresh water into ponds or tanks.

Turbidity

- A measure of light penetration into the water,
 - Affects photosynthetic activity
 - Organic phytoplankton
 - Inorganic Suspended soil particles
 - Runoff
 - Biological
 - Secchi disk
 - Turbidimeter

Chemical

- pH
- Salinity (salts)
- Dissolved Oxygen (DO)
- Chlorine
- Nitrogen
 - Ammonia
 - Nitrite
 - Nitrate
- Phosphorus
- Alkalinity (carbonates)
- Hardness (dissolved cations)
 - Calcium
- Others

- A measure of the ionic hydrogen concentration of a liquid.
 - Surrogate measure of the primary production of a water body

- Photosynthesis = increased pH (afternoon)
- Respiration = decreased pH (morning)
- Acceptable range between 6 and 9
- Fluctuation governed by alkalinity levels

- The amount of oxygen available for respiration in water
 - Used in the breakdown of energy-storing molecules
 - Has a natural saturation equilibrium in water
 - Temperature DO level at saturation
 - Salinity DO level at saturation
 - Elevation DO level at saturation
 - Minimum DO requirements
 - Warmwater 2-3 mg/L
 - Coldwater 5 mg/L
 - Supersaturation (>100%)
 - gas bubble disease
 - unstable phytoplankton community

Dissolved Oxygen

- Percent saturation is as important as concentration.
- Small fish use more oxygen than large fish per mass.
- Oxygen consumption doubles for each 18 degrees rise in temperature.
- Bacteria and algae consume more oxygen than fish.

Dissolved Oxygen Depletion

- Algae dying
- Overstocking
- Overfeeding
- Cloudy or rainy weather (pond turnover)
- Equipment failure
- Signs
 - Fish go off feed.
 - Fish gasping for air at the surface (piping).
 - Change in water color from green to brown.
 - Large fish die first.

Stratification

Treatment for D.O. Depletion

- Monitor DO levels = Key!
- Use emergency aeration.
- Flush with fresh oxygenated water.
- Stop feeding until levels increase.

Chlorine

- A toxic gas typically used in water treatment and wastewater treatment plants to disinfect water before and after human use
 - Biosecurity disinfect aquaculture equipment
 - Bleach Sodium hypochlorite (NaOCI)
 - Oxidizing agent
 - Chloramines
 - Crayfish and shrimp less susceptible
 - Removed by
 - Carbon filtration
 - Sodium sulfite
 - chloromines
 - Heavy aeration

Nitrogen Cycle

N₂ gas is also created through denitrification under anoxic conditions Volatilized from water by aeration

Nitrogen Compounds

- Types
 - dissolved gas
 - ammonia
 - ionized
 - un-ionized
 - nitrite
 - nitrate

Time Required for Bio-Filter to Mature

- Primary metabolite of protein
 - Used in household cleaners very toxic
 - Ammonia (NH₃) toxic
 - Ammonium (NH₄⁺) non-toxic
- High pH and temperature make the proportion as NH₃ higher, and more toxic

Temperature														
-11	42.0 (°F)	46.4	50.0	53.6	57.2	60.8	64.4 18	68.0	71.6	75.2	78.8	82.4	86.0	89.6
pH	6 (°C)	8	10	12	14				22	24	26	28	30	32
7.0	.0013	.0016	.0018	.0022	.0025	.0029	.0034	.0039	.0046	.0052	.0060	.0069	.0080	.0093
7.2	.0021	.0025	.0029	.0034	.0040	.0046	.0054	.0062	.0072	.0083	.0096	.0110	.0126	.0150
7.4	.0034	.0040	.0046	.0054	.0063	.0073	.0085	.0098	.0114	.0131	.0150	.0173	.0198	.0236
7.6	.0053	.0063	.0073	.0086	.0100	.0116	.0134	.0155	.0179	.0206	.0236	.0271	.0310	.0369
7.8	.0084	.0099	.0116	.0135	.0157	.0182	.0211	.0244	.0281	.0322	.0370	.0423	.0482	.0572
8.0	.0133	.0156	.0182	.0212	.0247	.0286	.0330	.0381	.0438	.0502	.0574	.0654	.0743	.0877
8.2	.0210	.0245	.0286	.0332	.0385	.0445	.0514	.0590	.0676	.0772	.0880	.0998	.1129	.1322
8.4	.0328	.0383	.0445	.0517	.0597	.0688	.0790	.0904	.1031	.1171	.1326	.1495	.1678	.1948
8.6	.0510	.0593	.0688	.0795	.0914	.1048	.1197	.1361	.1541	.1737	.1950	.2178	.2422	.2768
8.8	.0785	.0909	.1048	.1204	.1376	.1566	.1773	.1998	.2241	.2500	.2774	.3062	.3362	.3776
9.0	.1190	.1368	.1565	.1782	.2018	.2273	.2546	.2836	.3140	.3456	.3783	.4116	.4453	.4902
9.2	.1763	.2008	.2273	.2558	.2861	.3180	.3512	.3855	.4204	.4557	.4909	.5258	.5599	.6038
9.4	.2533	.2847	.3180	.3526	.3884	.4249	.4618	.4985	.5348	.5702	.6045	.6373	.6685	.7072
9.6	.3496	.3868	.4249	.4633	.5016	.5394	.5762	.6117	.6456	.6777	.7078	.7358	.7617	.7929
9.8	.4600	.5000	.5394	.5778	.6147	.6499	.6831	.7140	.7428	.7692	.7933	.8153	.8351	.858
10.0	.5745	.6131	.6498	.6844	.7166	.7463	.7735	.7983	.8207	.8408	.8588	.8749	.8892	.9058
10.2	.6815	.7152	.7463	.7746	.8003	.8234	.8441	.8625	.8788	.8933	.9060	.9173	.9271	.938

- Nitrification
- Death of algae
- Decomposition of fish waste
- Decomposition of uneaten food
- Decomposition of bacteria
- Breakdown of chloramines

Symptoms of Ammonia Toxicity

- Symptoms
 - Fish swim erratically.
 - Fish may quiver when netted.
- Treatment
 - Reduce pH.
 - Reduce temperature.
 - Decrease stocking density.
 - Use biological filtration
 - Flush in fresh water.

Nitrite Nitrogen (NO₂⁻)

- SECONDARY METABOLITE OF PROTEIN
 - CAUSES BROWN-BLOOD DISEASE
 - ALTERS HEMOGLOBIN
 - LESS OXYGEN TRANSFER
 - EFFECTS WEAKENED BY ADDITION
 OF CHLORIDE IONS
 - NACL SALT
 - 10 CL- TO 1 NO₂- RATIO
 - 4.5 LBS OF NACL = 1 PPM CL⁻ PER ACREFOOT OF WATER

Nitrate Nitrogen (NO₃⁻)

- Major Nitrogen fertilizer
 - Algal blooms
- Least harmful nitrogen ion
 - Can be toxic at extremely high concentrations
- Readily taken up by plants
 - Wetland mitigation
 - Aquaponics

RELATIONSHIPS

Physical Parameters

Alkalinity

- Alkalinity is the capacity of water to buffer against wide pH swings
- Acceptable range 40-400 mg/L
- Measured in terms CaCO₃
 - If NaCO₃ the buffer capacity is less
- Solution to low alkalinity
 - Tanks
 - Add calcium bicarbonate (baking soda)
 - Ponds and raceways
 - More difficult to manage

Hardness

- Hardness if the measure of divalent cations
 - calcium
 - magnesium
- Hardness is used as an indicator of alkalinity but hardness is not a measure of alkalinity
 - Ames water example
 - ~200 mg/L hardness but 12 mg/L alkalinity
- Importance to developing larvae and shell fish

Plant Nutrients

Nitrogen

- Amino Acids
- Plants use nitrate (NO₃⁻)
- Unionized Ammonia (NH₃) is toxic
- Nitrogen cycle

Phosphorus

- DNA, ATP, bone (Calcium phosphate), Lipids (fat)
- Usually tightly bound to soil sediments, but can be released in the absence of oxygen
- Generally, the most limiting nutrient for plant growth in aquatic systems
- Importance of N:P ratio in pond fertilization regimes

Phosphorus
30.97

- Dissolved oxygen
- Nitrogen compounds
 - ammonia
 - nitrite
 - nitrates
- pH
- Alkalinity
- Hardness
- Temperature
- Chorine

Resources

- North Central Regional Aquaculture Center
 - http://www.ncrac.org/
- Southern Regional Aquaculture Center
 - https://srac.tamu.edu/index.cfm/event/CategoryDetails/whichcategory/25/
- Water Quality in Ponds for Aquaculture
 - by: Claude E. Boyd

Suppliers

- HACH
 - http://www.hach.com/
- LaMotte
 - http://www.lamotte.com/
- Yellow Springs Instruments (YSI)
 - http://www.ysi.com/index.php
- Aquatic Eco-Systems, Inc.
 - http://www.aquaticeco.com/
- Southern Aquaculture Supply
 - http://southernaquaculturesupply.com/