

Iowa DNR Advanced Fingerling Walleye Culture

J. Alan Johnson

Rathbun Fish Hatchery and Research Facility, Moravia, IA

Why walleye culture?

Demand for walleye

- Walleye are a valued as sportfish and table fare.
- Cultured primarily for sport fishery enhancement.
- Market for all life stages egg to adult.
- Limited food fish production in the US.
 - 7-10 million lbs of walleye or pike perch imports.

Progress in walleye culture

In the past, the suitability of walleye for intensive production was questioned:

- Poor survival on feed,
- Poor growth rates,
- Poor feed conversion,
- Prone to disease.

Rathbun Fish Hatchery data is proof to the contrary.

- 1.4 feed conversion ratio.
- 1.5 mm/d growth rate
- Survival >70% fry to 9"
- 200,000 fish stocked annually.

Overview

Walleye production on formulated feed.

- Consider challenging characteristics
 - Wild Broodstock sources.
- Feeding and culture techniques for walleye:
 - Larvaculture.
 - Tandem pond-tank culture.
 - Habituation.
 - Grow out to 9-10".

Characteristics

Gas bladder inflation – physoclistus

Piscivorous from fingerling to adult

Coolwater species.

Tapetum lucidum

- Reflective surface at the back of the retina.
- Preadapted to life in low light environments (Moore 1944).

Phototaxis

- Positive hatch to 21 days.
- Negative 21 days through adulthood.

Phase I Larviculture

Larva

Prolarval to early juvenile stage (Summerfelt et al. 2011).

"ends when all organs and structures related to food acquisition are completely developed and functional." (Yufera 2011)

Culture: maintain in conditions suitable for growth.

Tank = Intensive culture

Production can be increased at will.

Pond = Extensive culture

Production is limited by the food web.

Larvaculture Pond or Tank?

Comparative Risks

	Pond Culture	Tank Culture
Biosecurity	Low	High
Fingerling supply	Seasonal	Year round
Capitol costs	Land, ponds	Building, tanks
Larval care	Low	High
Deformity	Rare	Low
Controlled environment	Vulnerable	Controlled
Mechanical failure	Rare	Vulnerable

Bottom Line: Food fish systems will require intensive fry culture.

Phase I Larvaculture in tanks

Larvaculture

1. Artemia method to 125 mm.

Quebec's La Station Piscicole de Baldwin-Coaticook.

- 25% survival during habituation to feed.
- To a fall fingerling 70% survival
- 17.5% overall survival 107 mm.

New York's Oneida Hatchery

- 40 days of Artemia, 10 day habituation to diets (50d)
- 30-50% mortality during habituation to feed.
- 25% survival from fry to 125 mm.

Larvaculture

2. Pelleted diets.

- Research at Rathbun and ISU early '90 to today.
- First feed at 2 days post hatch.
- 50% to 80% survival at day 25 post hatch.
- Key techniques:
 - Surface spray
 - Turbid water
 - 100 lx light
 - Frequent feeding
 - Diet Otohime.

Larvaculture - diets

Key culture techniques:

- Turbid water (50 NTU) to prevent surface cling.
- Surface spray to facilitate gas bladder inflation.
- Palatable diet and precision feeding.

Turbidity

Diets and feeding

Changing strategies for Phase I culture:

- •Goal to produce 42 mm fish, 0.57 g.
- Stock 30 fry/L: reduction from 40 fry/L.
- Increase temperature from 18.5° C to 21° C.
- •Longer culture interval: up to 35 dph.
- •Flow rates from 0.5 to 2 exchanges/hour.
- Started on grower diet.

Larvaculture - diets

- Palatability differences in diets.
- 2007 diet trial.

Turbidity

Rathbun Fish Hatchery

Overview of production techniques.

- Phase I Pond culture
- Phase II Feed training
- Phase III Growout to 9 inches

Phase I: Ponds

1-ac plastic-lined ponds.

Alfalfa pellet fertilization

100 lbs initial, 100 lbs/wk.

Producing quality fingerlings.

Quality = size.

Density vs. Fish weight

Meeting size goals

Phase I: Ponds

Can higher nitrogen application result in more quality fish?
YES

Definition of quality fish revised:

- 800/lb (0.57 g) for habituation to feed.
- 1000/lb (0.45 g) for stocking in stream fisheries.

Year	Density #/ac	Fertilizer	N (kg/ha)	W (g)	% Ponds ≥ 0.57 g	% Ponds ≥ 0.45 g
2011	50K	ALF	16.8	0.74	100	100
	50K	SBM	34.8	0.78	100	100
	75K	SBM	34.8	0.66	100	100
2013	50K	ALF	20.7	0.55	33	100
	75K	Mix	30.4	0.69	85	100

Why >800/lb?

800/lb = >42 mm; 1000/lb = 37 mm.

- Habituation of pond reared fingerlings best above 0.57 g. (about 42 mm). Johnson and Rudacille (2010).
- Scale development initiated at 24 mm complete at 45 mm.
 - Priegel (1964)
- Mechanical damage allows entry of Columnaris.
 - Huissain and Summerfelt (1991)

Theory: fingerlings larger than 0.57 g are fully scaled and therefore more resilient to handling.

Phase II - Habituation

Process of converting fingerlings from live prey to commercial diets.

- •Fish size
- Environment
- Diets and feeding
- Disease management

Phase II - Habituation

Dark - room Environment

- No overhead lighting eliminates shadows
- Submerged lights further reduce shadows

	Overhead lighting	Dark Room - Submerged Lights
Survival	37.3	60.7
g/d	0.117	0.147

63% increase in survival

- Increased growth rates
- Five evaluations, all favorable.
 - **Production practice since 2003**

Phase II

Keys to success:

Dark room environment, subm. light.

Dark room

environment

Day 18-35: WG 1.0 to 2.0.

Phase II - Grading

 High habituation survival - up to 15% cannibalism during Phase III grow out.

	Graded	Ungraded
Cannibalism	2%	10%
Survival	94%	78%
FCR	1.6	1.9

Growout to 9 inches:

- 75% of fish cost incurred.
 - Feed; FCR = 2.0.
 - Therapeutants; Formalin \$32,000.

How can we improve efficiency? Improve FCR

Year	Research Project	FCR	\$ Savings/tank
2008	Phase II grading	1.6	\$1780
2009	Measure fish, Feed the gain	1.4	\$700

NR Phase III

Growth period – July – October

3.75 in. to 9-10 inches

Culture System:

- 10 outdoor circular tanks40,000 gal.
- Flow rate 0.45 exchanges/hour
- Final density 0.15 lb/gal

Larvaculture

2011 Growout to 200 mm

2011 Data	Fry culture	Pond – Tank ^a
Phase I	3-37	3-35
Survival (%)	46.3	91.9
Final L (mm)	42.3	50.6
Phase II	38-67	36-67
Survival (%)	69.4	71.5
Final L (mm)	91.6	93.8
Phase III		
Survival (%)	91.4	88.6
Final L (mm)	207.5	209.7
Deformity (%)		
Opercula	0.60	<0.01
Jaw	0.30	<0.01
Sloped head	1.60	<0.01
Normal	97.40	100.0

^a Values for Phase I and III pond culture fingerlings were obtained from Rathbun Fish Hatchery production averages for 2011. Phase II results were obtained in a research trial at Rathbun Fish Culture Research Facility.

Growth rates

75-78° F Optimal Growth Temperature

- Fry
 - Pond Culture: 1.2 mm/d
 - Intensive Fry culture: 1.0 mm/d 18.3° C
- Fingerlings: 45 to 90 mm
 - 1.75 to 2.0 mm/d
- Fingerlings: 90 to 230 mm
 - 1.5 to 1.75 mm/d

Survival (%) by Culture Phase

Year	ı	II	III	Fry to fall fingerling
2001	71.5	28.9	88.7	46.6
2002	89.6	26.0	90.8	59.7
2003	84.6	33.1	97.4	60.5
2004	81.7	46.9	92.7	35.5
2005	99.6	52.9	83.0	60.7
2006	87.7	67.3	82.8	48.8
2007	95.0	91.8	85.5	74.4
2008	85.0	89.1	88.7	67.2
2009	100.9	87.5	85.6	74.9
2010	92.9	84.0	94.1	73.4
2011	90.7	85.1	82.8	63.9
2012	89.0	61.0	82.9	45.0
2013	89.8	71.4	80.2	51.4
2014	88.3	61.9	82.6	45.1
2015	89.4	73.3	87.0	57.0

For more information

Walleye Culture Manual (1996)

R. C. Summerfelt, Editor

Biology, management, and culture of walleye and sauger. B. Barton Ed.

Walleye Culture Chapter: Summerfelt, Johnson, Clouse.

Biology and Culture of Percid Fishes - Principles and Practices. Kestemont, Dabrowski Summerfelt, Eds.

Two intensive walleye culture chapters: Summerfelt, Johnson.

Production of walleye as potential food fish (2010)

R. C. Summerfelt et al. NCRAC Pub #116