Coolwater Fry Culture in Ponds

Chris Hartleb
Department of Biology
Northern Aquaculture Demonstration Facility Aquaponics Innovation Center

Pond Dynamics

Source water quality

- Biological processes
- Plankton dynamics
- Photosynthesis
- Respiration
- Excretion
- Decomposition
- Nutrient cycling
- Benthos dynamics

Pond

- Location \& shape
- Size \& depth
- Infrastructure
- Operation decisions
- Fish
- Species, size, density
- Inputs
- Fertilizers \& feed
- Energy (aerators)
- Water management
- Timing of operations

Food Chain

Natural and Artificial Spawn

University of Wisconsin-Stevens Point
College of Letters \& Science

Fry Development

Culture Practices

- Pond / Tank / Pond
- Step 1: Spawn Adults

Habituation

Growout

Culture Practices

- Step 2: Place fry in outdoor culture pond

Culture Practices

- Step 3: Larval fish feed on natural foods

Culture Practices

- Step 4: Fertilizers added weekly to enhance aquatic food web

University of Wisconsin-Stevens Point

Culture Practices

- Step 5: Harvest and feed-train: habituate to formulated feed

Best Fertilizer

- Reduce costs
- Increase efficiency
- Increase survival rate
- Decrease the cost of fingerlings

Inorganic Fertilizer

- Primary components:
- Nitrogen (N)
- Phosphorus (P)
- Carbon (C)
- Enhance autotrophic food webs

	Percentage		
Fertilizer	\mathbf{N}	$\mathbf{P}_{2} \mathbf{O}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{2}} \mathbf{O}$
Urea	45	0	0
Calcium nitrate	15	0	0
Sodium nitrate	16	0	0
Ammonium nitrate	$23-35$	0	0
Ammonium sulfate	0	0	0
Superphosphate	0	$44-54$	0
Triple superphosphate	11	48	0
Monoammonium phosphate	11	0	
Diammonium phosphate	18	48	0
Calcium metaphosphate	0	$62-64$	0
Potassium nitrate	13	0	44
Potassium sulfate	0	0	50

Organic Fertilizer

- Various types:
- Animal manures (poultry, cattle, etc)
- Plant material (hay, alfalfa, cottonseed, soybean meal, etc)
- Directly \& indirectly enhance algae \& zooplankton
- Direct: Input of N, P, C stimulate autotrophic food web
- Indirect: Stimulate heterotrophic food webs

	Average Composition (\%)			
Material	Moisture	N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$
Dairy cattle manure	85	0.5	0.2	0.5
Beef cattle manure	85	0.7	0.5	0.5
Poultry manure	72	1.2	1.3	0.6
Swine manure	82	0.5	0.3	0.4
Sheep manure	77	1.4	0.5	1.2
Mixed grass, dry	11.0	1.12	0.48	1.44
Fresh cut grass	69.2	0.78	0.21	0.79
Oat straw	10.2	0.66	0.21	2.40
Peanut hulls	7.7	1.07	0.14	0.98
Rice straw	7.2	0.56	0.21	1.08
Potato peelings	79.8	0.34	0.09	0.0
Sugar cane leaves	74.3	0.21	0.16	0.91
Cottonseed meal	7.2	6.93	2.45	1.74
Soybean meal	9.7	7.31	1.44	2.30

Nutrient Ratio Manipulation

- Nutrient composition of phytoplankton biomass

$$
-45-50 \% \text { C, } 8-10 \% \text { N, } 1 \% \text { P }
$$

- Low N:P ratios = cyanobacteria
- High N:P ratios = non-cyanobacteria algae
- 20:1 (N:P) [600 ug N/L and 30 ug P/L]
- Small green algae and diatoms = good
- Large filamentous and cyanobacteria = bad

Green Water Method (Visibility)

- Implies green water is nutrient rich water
- Uses visibility/Secchi disk to determine greenness
- Inexpensive, subjective, minimal accuracy
- Does not consider composition of algae, plankton, or impact of fertilizer on oxygen
- Difficult to establish consistent food web

Fixed Fertilization Rate Strategy

- Fertilizer is applied weekly at a selected quantity
- Requires prior knowledge of pond dynamics \& fish production
- Simple; annual production of fish predictable
- Can lead to over-fertilization and is specific for each pond

Water Chemistry Measurement

- Regularly collected water samples are measured for:
- Total phosphorus \& soluble reactive phosphorus
- Ammonia-N, Nitrate-N, \& Nitrite-N
- Inorganic carbon
- Pond-specific \& can precisely measure nutrient deficiencies
- Significant cost, technical, time consuming, \& does not take into account daily fluctuations

Algal Bioassay Fertilization Strategy

- Based on algal nutrition limitation of N, P, \& C
- Is pond \& time-specific; utilizes ponds own algal community
- Uses a simple visual indicator
- Inexpensive, simple, \& ecologically-based
- Water is collected weekly in clear sample bottles
- Each bottle is spiked with either N, P, C, or nothing (control), or a combination.
- Bottles are placed in sunlight for 2-3 days
- Water is filtered and compared visually and ranked as 100%, 50\%, or 0\% rate-limiting

Algal Bioassay Pond Samples

- Water samples showing nutrient spikes
- Filtered water showing limiting nutrient

Yellow Perch Fry Example

- Methods
- Year 1: Examine pond fertilization practices
- Late April add organic fertilizer
- Late April to mid-June weekly inorganic fertilizer
- Urea-N and phosphoric acid (Desired Secchi depth 1.5 m)
- Monitor water chemistry of culture ponds
- Monitor phyto- and zooplankton
- Monitor growth of yellow perch fingerlings
- Stocked yellow perch fry (late April; 850,000 per $1 / 4$ acre)
- Evaluate diet

Water Chemistry and Visibility

- $\mathrm{pH} 8.46 \pm 0.26$
- Alkalinity $156.5 \pm 13.2 \mathrm{ppm}$
- Hardness 248.2 ± 26.7 ppm

Growth

Mean Length week 7

- Inorganic: $29.62 \mathrm{~mm} \pm 3.05$
- Organic: $25.13 \mathrm{~mm} \pm 2.79$
- T-test: p < 0.001

Growth

Mean Weight week 7

- Inorganic: $0.316 \mathrm{~g} \pm 0.08$
- Organic: $0.192 \mathrm{~g} \pm 0.08$
- T-test: $\mathrm{p}<0.001$

Results: Diet

Diet of yellow perch fry in the organic fertilized ponds

Results: Diet

Diet of yellow perch fry in the inorganic fertilized ponds

Results: Diet

Comparison of diets in inorganic and organic treatments
\square Bosmina spp.
\square Chydoridae
\square Ceriodaphnia spp.
\square Daphnia spp.
\square Copepodite
\square Nauplii
Simocephalus spp.

More food types in inorganic

Bosmina spp. vs. nauplii

Inorganic treated ponds, fish eat more

Year 2: Four Fertilizer Treatments

LM 2
 LM 3
 LM 4
 LM 10

LM 2: Lake Mills Pond 2 received fixed-input organic fertilizer
 LM 3: Lake Mills Pond 3 received variable inorganic fertilizer
 LM 4: Lake Mills Pond 4 received fixed-input inorganic fertilizer
 LM 10: Lake Mills Pond 10 received fixed-input organic plus variable inorganic fertilizer

Zooplankton Attack

Chlorophyll concentration

- Highest but declines
- Fixed input inorganic
- Fixed input organic + variable inorganic
- Lowest but steady
- Variable inorganic
- Fixed input organic
- Why decline?
- Zooplankton predation

LM 2 LM 3 LM 4 LM 10

LM 2: Lake Mills Pond 2 received fixed-input organic fertilizer
LM 3: Lake Mills Pond 3 received variable inorganic fertilizer
LM 4: Lake Mills Pond 4 received fixed-input inorganic fertilizer
LM 10: Lake Mills Pond 10 received fixed-input organic plus variable inorganic fertilizer

Temperature Effect

	- LM 2	- LM 3	- LM 4	- LM 10	
15					
© 14.5					
迷 14					
気 13.5					
$\frac{5}{E} 13$					
11.5					
0	0.0002	0.0004	0.0006	0.0008	0.001
		lorophyll a Ab	lance (Mg / L)		

- Both inorganic fertilizer treated ponds showed highest yellow perch specific growth rate
- Both organic fertilized ponds showed lowest yellow perch specific growth rate

- LM 2 LM 3 - LM 4 LM 10

LM 2: Lake Mills Pond 2 received fixed-input organic fertilizer
LM 3: Lake Mills Pond 3 received variable inorganic fertilizer
LM 4: Lake Mills Pond 4 received fixed-input inorganic fertilizer
LM 10: Lake Mills Pond 10 received fixed-input organic plus variable inorganic fertilizer

Conclusions

- Application of fertilizer based on transparency to establish "green water" not a good indicator of pond fertilization or trophic cascade.
- Early fry growth was strongly temperature dependent as was fertilizer effectiveness.
- Implications of diet selection based on fertilization:
- Growth: Larger fish produced by inorganic treatment
- Larger amount of prey and more varied diet
- Bosmina spike in $5^{\text {th }}$ and $6^{\text {th }}$ weeks helpful for growth?
- Zooplankton bloom effect
- Possibility of gape limitation relaxation
- Poor survival related to low density of preferred prey.

